Activate

What is a force?

- A force can be a push or a pull

- A force is measured in Newtons (N)
- We measure forces with a newton meter
- Forces explain why objects will move, change direction and change speed
- Forces always act in pairs, we call these interaction pairs e.g. the tennis ball exerts a downward force of weight onto the table, the table exerts an equal and opposite reaction force onto the ball

Balanced and unbalanced forces

- When forces acting on an object are the same size, but acting in different directions, we say that they are balanced
- When forces are balanced, the object is either not moving (stationary) or moving at a constant speed
- When the two forces acting on an object are not the same size, we say that the forces are unbalanced
- When forces are unbalanced, the object will either be in acceleration or deceleration
- The resultant force is the difference between the two unbalanced forces

Types of forces

- Contact forces act when two objects are physically touching
- Air resistance and friction are examples of contact forces
- Non-contact forces act when two objects are physically separated (not touching)
- Examples of non-contact forces include gravitational force and magnetic forces
- We call the region where an object experiences a non-contact force a field, examples of these include gravitational fields and magnetic fields

Speed

- Speed is a measure of how quickly or slowly that something is moving
- We measure speed in meters per second (m / s), this means that distance must be in meters and time must be in seconds
- We calculate speed with the following formula

$$
\text { speed }(\mathrm{m} / \mathrm{s})=\frac{\text { distance travelled }(\mathrm{m})}{\text { time taken }(\mathrm{s})}
$$

- Relative motion compares how quickly one object is moving compared to another
- If both objects are moving at the same speed, they are not changing position in comparison to one another, meaning that their relative speed is zero

Gravity

- Gravity is a non-contact force that acts between two objects
- Gravitational force pulls you back to Earth when you jump
- The size of the gravitational force depends on the mass of the two objects and how far apart they are
- Weight is the downward force caused by gravity acting upon the mass of an object, it is measured in Newtons (N)
- Mass is the amount of matter within an object, whereas weight is the downward force of the object, we measure mass in kilograms - We calculate weight with the equation:

$$
\text { weight }(\mathrm{N})=\text { mass }(\mathrm{kg}) \times \underset{\text { gield strength }}{\text { gravitational }}(\mathrm{N} / \mathrm{kg})
$$

- The value of the gravitational field strength can vary, so although a person's mass would be the same on different planets, their weight would not be

Distance-time graphs

Distance-time graphs tell the story of a journey, they show how much distance has been covered in a certain period of time

- To find the average speed, the total distance must be divided by the total time

Key terms

Make sure you can write definitions for these key term

acceleration air resistance balanced contact force deceleration distance-time graph field force friction gravity gravitational force interaction pair

