Knowledge Organiser – Cell Structure

Diagrams

Eurakryotic cells	Cells that contain a nucleus	
Eukaryote	An organism that is made of eukaryotic cells	
Prokaryotic cells	Single-celled organisms that do not contain a nucleus	ĺ
DNA	Deoxyribonucleic acid – the genetic information found in all living orgnanisms	
Ribosome	A cell organelle that makes proteins	
Respiration	The release of energy from glucose	
Diffusion	The net movement of particles form an area of high concentration to an area of lower concentration	
Organelle	A part of a cell with a specific function	
Mitochondrion	A cell organelle in which respiration occurs	
Chloroplast	A cell organelle in which photosynthesis occurs	
Cytoplasm	Jelly like substance in cells where chemical reactions occur	T
Nucleus	A cell organelle found in eukaryotes containing their genetic material	
Cell membrane	Structure surrounding the cell that controls what moves in and out of the cell	
Vacuole	Found in plant cells, filled with cell sap, keeps the cell turgid	
Cell wall	Made from cellulose and provides structural strength the some cells (not animal cells)	
Photosynthesis	Chemical reaction that happens in chloroplasts that stores energy in glucose	
Turgid	Describes a swollen cell	┡
Biconcave	Describes a shape with a dip that curves inwards on both sides	

Ova	Eggs
Axon	The extension of a nerve cell along which the electrical impulses travel
Phloem	Tubes of living cells that carry sugars to all cells in plants
Xylem	Tubes of dead plant cells through which water flows
Electron microscope	A microscope that uses electrons in place of light to give higher magnification
Resolution	The smallest distance between two seperate points

SIMPLIFIED DIAGRAMS OF TYPICAL CELLS A comparison but NOT to scale! © doc brown

Knowledge Organiser – Infection and Response

Diagrams

Infectious	Describes a pathogen that can easily be transmitted, or an infected person who can pass on the disease.		Double blind trials		A medical experiment in which the patient and doctors do not know who has been given the drug and who		
Vector	An animal that spreads a communicable disease.				has been given the placebo.		
Antibiotic	A group of medicines, first discovered by Alexander Fleming, that kill bacteria and fungi but not viruses.	Placebo / Phagocytes / Lymphocytes /		es	A medicine that has only psychological effects. A type of white blood cell that engulf pathogens.		
Chitin	A polymer made from sugars that forms the cell walls of fungiand the exoskeleton of insects.			tes	A type of white blood cell that produce antibodies. Highly specific Y-shaped proteins that are produced by		
Hyphae	Branching filaments of a fungus that spread out.	Antibo	odies	5	the immune system to help stop intruders from		
Malaria	A communicable disease, caused by a protest transmitted in mosquitos, which attacks red blood cells.			-			
Insecticide	A chemical that kills insects.	1	z		g Secondary response		
Lysozymes	Antibacterial enzymes found in your tears to prevent eye infections.		RATIO	ation	ection A		
Cilia	Tiny hair-like projections from ciliated cells that waft mucus out of the gas exchange system.		CENTI		ă≟ / Y ➡ / Y		
Antigen	A protein on the surface of a pathogen that your antibodies can recognize as foreign.		Y CON	Ļ	i / Y		
Antitoxin	A protein produced by your body to neutralize harmful toxins produced by pathogens.		LIBOD	Р	rimary		
Vaccine	A medicine containing an antigen from a pathogen that triggers a low level immune response so that if you become infected later your body can respond more quickly to the pathogen.		ANI	re	TIME		
Antiseptic	A substance applied to the skin or another surface to destroy pathogens.]	Pr ris	imary an es gradua	tibody response: the antibody concentration ally and peaks about 2 weeks after vaccination.		
Anaesthetic	A drug that stops all pain sensation and can be local or general.		Se ris	es quickly	antibody response: the antibody concentration , and the response is more intense. The antibody		
Efficacy	How effective a drug is.		CO	ncentratic	n remains higher for longer.		

Knowledge Organiser – Bioenergetics

Diagrams

Endothermic reaction	A reaction that requires energy to be absorbed to work		Photosynt	hesis		
Photosynthesis	The process by which plants use sunlight to produce glucose. Happens in chloroplasts		Word equation	t		
Limiting factor	Anything that reduces or stops the rate of a reaction		dioxide Chloro	phyll		
Yield	The amount of an agricultural product produced					
Respiration	The process by which living things release energy from glucose. Happens in mitochondria		Symbol equation 6CO ₂ + 6H ₂ O –	Jht → C6H12O6 + 6O2		
Aerobic	In the presence of oxygen		Chlore	ophyll		
Oxidation	A reaction that uses oxygen	1	C ben J)		
Exothermic reaction	A reaction that gives out thermal energy		ſ	1		↑
Anaerobic	In the absence of oxygen	Sis		sis	ţ	
Oxygen debt	The amount of extra oxygen the body needs after exercise to break down lactic acid	osynthe		osynthe	<u> </u>	
Fermentation	The chemical breakdown of glucose into ethanol and carbon dioxide by respiring micro-organisms such as yeast	of phot		of phot	inder to	
Metabolism	The sum of all the chemical reactions that happen in an organism	Rate				
Ae	robic Respiration . Anaerobic Respiration	-	Light intensity	concentratio	'n	Temperature
Glucose + Oxygen ——	> Carbon Dioxide + Water + Energy					
$C_6 H_{12} O_6 + 6 O_2$ —	\rightarrow 6CO ₂ + 6H ₂ O + Energy					

Key Terms		Knowledge Organiser – Atomic S	Structure and th	e Periodic Table	Diagrams			
Atom	A particle with no	b electric charge made up of a nucleus	Halogens	The elements in Group 7 of the periodic table.				
ALOITI	containing protons and neutrons and surrounded by electrons.		Diatomic molecule	A molecule containing 2	atoms.			
Proton	A positively charg	ged particle found in the nucleus of an atom.	Halides	Compounds made from	Group 7 elements.			
Neutron	A neutral particle	found in the nucleus of an atom.	Mixture	More than one substanc	e that are not chemically			
	Negatively charge	ed particles found on energy levels (shells)	Mixture	bonded.				
Electron	surrounding the i	nucleus inside atoms.	Solvent	The liquid that a solute of	dissolves in.			
Nucleus	Central part of ar	n atom containing protons and neutrons.	Solution	A solute dissolved in a s	olvent.			
Energy level	The region an ele	ectron occupies surrounding the nucleus inside	Soluble	A substance that will dis	solve.			
(shell)	an atom.		Insoluble	A substance that will not	t dissolve.			
Atomic	Number of proto	ns in an atom	Solute	The solid that dissolves	in a solvent.			
number			Dlum Dudding	Model Nucl	aar Madal			
Mass number	Number of proto	ns plus neutrons in an atom.	Fium Fuuding					
Isotope	Atoms with the so	ame number of protons but a different number	+ve potential sphere	+ve nucleus	Orbiting electrons			
Relative atomic mass	The average mas the mass and am RAM = Total mas	as of atoms of an element taking into account nount of each isotope it contains. as of atoms / total number of atoms						
Electronic structure	The arrangement	t of electrons in the energy levels of an atom.			\mathcal{P}			
lon	An electrically characterically characterized protons and electeric	arged particle containing different numbers of trons.		Atomic Mass	= # of Protons + # of Neutrons			
Group	The name given	to each column in the periodic table.	Nucleus	<u> </u>				
Element	A substance cont	aining only one type of atom.		Electron				
Compound	A substance mad together.	e from different elements chemically bonded	Neutrons					
Period	The name given	to a row in the periodic table.						
Alkali metals	The elements in (Group 1 of the periodic table.		Atomic Nu	mber = # of Protons			
Noble gases	The elements in (Group 0 of the periodic table.						

Key Terms	Knowledge Organ	Knowledge Organiser – Bonding, structures and the properties of matter					
Giant Lattice	Ionic substances are made up of a giant la negative ions in a regular structure.	t lattice of positive and Structure of Monomers and Polymers					
Ionic bonding	The electrostatic attraction between positi	sitive and negative ions MONOMER					
Molecule	Particle made from atoms joined together	her by covalent bonds					
Covalent bond	Two shared electrons joining atoms togeth	ether A monomer is a small molecule.					
Intermolecular forces	Weak forces between molecules	POLYMER					
Polymer	Long chain molecule made from joining lo molecules together by covalent bonds	lots of small					
Monomer	The building block (molecule) of a polyme						
Delocalised	Free to move around	A polymer is a long-chain molecule made up of a repeated pattern of monomers.					
Metallic bonding	The attraction between the nucleus of met delocalized electrons	netal atoms and free electrons from outer shalls of motal atoms					
Malleable	Can be hammered into shape						
Alloy	A mixture of a metal with small amounts on usually other metals	is of other elements,	•				
States of matter	These are solid, liquid and gas	(+)(+)(+)(+)	ant.				
Fullerenes	Family of carbon molecules each with carb rings to form a hollow sphere or tube	arbon atoms linked in $++++++$	ovaledine				
Catalyst	Substance that speeds up a chemical reac up in it	eaction but is not used	No.				
Na	$ \begin{array}{c} + & - \\ & & \\ & $	Ionic bonding and structure					
Sodium atom Chlori	ne atom Sodium ion Chloride ion (a cation) (an anion) Sodium chloride (NaCl)						

Key Terms Knowledge				Organiser – Quantitative Chemistry						
Relative atomic mass Relative formula mass	The average ma the mass and th The sum of the formula.	ass of atoms of an he amount of each relative atomic ma	element, taking into accou isotope it contains. asses of all the atoms in the	nt e						
Mole	Measurement o	of the amount of a	substance.							
Avogadro constant	The number of given substance	atoms, molecules e (6.02x10 ²³).	or ions in one mole of a		carbon	+	oxygen	→	carbon	dioxide
Thermal decomposition	Reaction where down into simp	high temperature ler substances.	causes a substance to brea	ak	С	+	02	→	C	D ₂
Evenes	When the amount of a reactant is greater than the		greater than the mount th	at	12	+	2 x 16 🗲	12+	(2 x 16)	
Excess	can react.	-		12g		32g	4	14g		
Limiting reactant	The reactant in products former not react.	he reactant in a reaction that determines the amount of roducts formed. Any other reagents are all in excess and will ot react.				th 12g of reaction.	carbon and			

Key Term	S		Knowled	ge (Organi	ser -	- Ch	emic	al Ch	nang	jes	
Reactivity series	An arrangement o	An arrangement of metals in order of reactivity				potassium sodium	most re	active	K Na			[H+]
Displacement reaction	Reaction where a place of a less rea	more read active elem	ctive eleme nent in a co	nt takes the ompound		calcium magnesium aluminium	- 1		Ca Mg Al			4
Oxidation	A reaction in whic oxygen)	ch a substa	ance loses e	electrons (gain	าร	carbon zinc			C Zn		IJ	
Reduction	Reaction in which oxygen)	ı a substan	ice gains el	ectrons (loses		- iron Fe tin Sn lead Pb					attery Acid	astric Acio
Ore	A rock from whicl	h a metal c	an be extra	acted for profit	t	copper		L	H Cu		BC	Ō
Acid	Solution with a pl water	H less than	7; produce	es H ⁺ ions in		silver gold platinum	least re	active	Ag Au Pt]
Alkali	Solution with a pl water	H more tha	an 7; produ	ices OH⁻ ions ir	n		Displa	acemen	t Reaction	ns		•
Aqueous	Dissolved in wate	r]
Strong acid	Acid in which all t	the molecu	ıles break iı	nto ions in wat	ter		+)-	> 🔵) +		
Weak acid	Acid in which only break into ions in	y a small fr water	raction of th	he molecules		AB	+ (C –	→ A	+ E	BC	
Dilute	A solution in whic dissolved	there is	a small am	ount of solute								
Concentrated	A solution in whic	ch there is	a lot of solu	ute dissolved								
Neutralisation	A reaction that us an acid	ses up som	e or all of t	the H ⁺ ions fro	om	Acio	d + A	lkali	-> sal	t + wa	ater	
Electrolysis	Decomposition of	ionic com	pounds usi	ng electricity		Met	tal +	acid	-> sal	t + hy	/drog	gen
Electrolyte	A liquid that conc	lucts electr	ricity			Me	tal ox	kide	+ acid	-> sa	t + v	wat
Discharge	Gain or lose elect	rons to be	come elect	rically neutral		NAC	tal ca	rho	⊥ otc	. acid	-> c1	ייייי 1+ ד
Inert electrodes	Electrodes that al not react themse	low electro lves	olysis to tak	ke place but do	C	IVIE	lai la		המוכ ד	aciu	-~ 30	זונ ד

Diagrams

onate + acid -> salt + water + carbon dioxide

Knowledge Organiser – Energy Changes						
Exothermic reaction	Reaction where thermal energy is transferred from the chemicals to the surroundings and so the temperature increases					
Endothermic reaction	Reaction where thermal energy is transferred from the surroundings to the chemicals and so the temperature decreases					
Activation energy	The minimum energy particles must have to react					

Knowledge Organiser – Energy Changes

Exothermic reaction	Reaction where thermal energy is transferred from the chemicals to the surroundings and so the temperature increases
Endothermic reaction	Reaction where thermal energy is transferred from the surroundings to the chemicals and so the temperature decreases
Activation energy	The minimum energy particles must have to react

Knowledge Organiser – Formulae and equations

Diagrams

Diatomic molecule	A molecule containing two atoms
Spectator	Ions that do not take part in a reaction and do not
ions	appear in the ionic equation for the reaction
Ionic	Balanced equation for reaction that omits any spectator
equation	ions

Common Reactions

Element + oxygen -> oxide of element

Eg Calcium + oxygen -> calcium oxide

Compound + oxygen -> oxides of each element in compound

Eg Methane + oxygen -> carbon dioxide + water

Water + metal -> metal hydroxide + hydrogen (for metals that react with water)

Eg water + sodium -> sodium hydroxide + hydrogen

Acid + metal -> salt + hydrogen

Eg Hydrochloric acid + magnesium -> magnesium chloride + hydrogen

Acid + metal oxide -> salt + water

Eg Sulphuric acid + copper oxide -> copper sulphide + water

Acid + metal hydroxide -> salt + water

Eg nitric acid + potassium hydroxide -> potassium nitrate + water

Acid + metal carbonate -> salt + water + carbon dioxide

Eg hydrochloric acid + calcium carbonate -> calcium chloride + water + carbon dioxide

Acid + ammonia -> ammonium salt

Eg nitric acid + ammonia -> ammonium nitrate

Positive ions		Negative ions				
Name	Formula	Name	Formula			
Hydrogen	H⁺	Chloride	CI ⁻			
Sodium	Na⁺	Bromide	Br ⁻			
Silver	Ag⁺	Fluoride	F [−]			
Potassium	K ⁺	lodide	I ⁻			
Lithium	Li+	Hydroxide	OH ⁻			
Ammonium	NH_4^+	Nitrate	NO_3^-			
Barium	Ba ²⁺	Oxide	0 ^{2–}			
Calcium	Ca ²⁺	Sulfide	S ²⁻			
Copper(II)	Cu ²⁺	Sulfate	SO4 2-			
Magnesium	Mg ²⁺	Carbonate	CO3 ²⁻			
Zinc	Zn ²⁺					
Lead Pb ²⁺		Half Equation				
Iron(II)	Fe ²⁺	ПdII	Equations			

Fe³⁺

AI 3+

Iron(III)

Aluminium

 $Fe_{(s)} + Cu^{2+} \longrightarrow Fe^{2+} + Cu_{(s)}$

Oxidation Half-Equation:

Fe(s) \longrightarrow Fe²⁺ + 2e⁻

Reduction Half-Equation:

 $Cu^{2+}_{(aq)} + 2e^{-} \longrightarrow Cu(s)$

(ey Terms		Knowledge Organiser – Energy			
Specific heat capacity	The enerby 1°C.	gy needed to raise the temperature of 1kg of a substance			
Dissipate	To scatte been dis spread o	r in all directions or to use wastefully. When energy has sipated it means we cannot get it back. The energy has ut and heats up the surroundings.			
Non-renewable energy resources	Energy r	esources which will run out, because they are finite and which cannot be replenished.			
Renewable energy resources	Energy r	esources which will never run out and (or can be) led as they are used.	A coal-fired power station		
Alternative energy resource	Resource renewab tidal pow global w	es other than fossil fuels. The resources may or may not be le. Nuclear power is not a renewable energy resource, but ver is. Alternative energy resources do not contribute to arming.	Water is turned to steam in the boiler	Generator makes electricity	
Biofuel	Fuel prod trees suc resource	duced from biological material. Biofuels are provided by th as willow that can be grown specifically as energy s.			

Coal arrives by

train or truck

Transforme

changes th

voltage

Steam turns the turbines

Coal is burned in the furnace

Energy Equations

Efficiency (%) = (useful energy out \div total energy in) x 100.GPE = mghGravitational Potential Energy = mass x gravity x height. $E_{e} = \frac{1}{2}ke^{2}$ Elastic potential energy = 0.5 x spring constant x extension²

- $KE = \frac{1}{2}mv^2$ Kinetic Energy = 0.5 x mass x velocity².
- W = F x d work done = force x distance.
- W = E work done = energy transferred.
- $P = E \div t$ power = energy \div time.
- $E = c x m x \theta$ energy = specific heat capacity x mass x change in temperature.

Key Terms		Knowledge Organiser – Electricity					Diagrams		
Potential difference (p.d.)	A measure of the electrical work done by a cell (or other power supply) as charge flows round the circuit. Potential difference is measured in volts (V).				o	Fuse	Cell		
Electric current	A flow of electrical charge. The size of the electric current is the rate at which electrical charge flows round the circuit.			al	⊗		A		
Resistor	A component that acts to limit the current in a circuit. When a resistor has a high resistance, the current is low.				Lamp	Voltmeter	Ammeter		
Directly proportional	When two quantities are directly proportional, doubling one quantity will cause the other quantity will cause the other quantity to double. When a graph is plotted, the graph line will be straight and pass through the origin.				esistor Li	ght dependent resistor	Thermistor		
Inversely proportional	When two quantities are inversely proportional, doubling one quantity will cause the othe quantity to halve								
Ohmic	The current flowing through an ohmic conductor is proportional to the potential difference across it. If the p.d. doubles, the current doubles. The resistance stays the same.				o∿o				
Non-ohmic	The current flowing through a non-ohmic resistor is not proportional to the potential difference across it. The resistance changes as the current flowing through it changes.				ower supply	d.c. power supply	Variable d.c. power supply		
P = V x I	pow	er = voltage x current.		A resister at constant	A filament lam	ιр. Δ	diode.		
$V = I \times R$	volta	age = current x resistance.		temperature.	C	<u> </u>			
Q = I x t	char	ge = current x time.			Current				
$E = V \times C$	enei	rgy = voltage x charge.					/		
E = V x I	x t enei	rgy = voltage x current x time.			· _/_	— Voltage ——	Voltage		
	$V_p = N_p N_s$	ransformer equation							
Total cost = number of units x cost per unit.									

Key T	erms	Knowledge Organiser – Atomic Structure				yrams
Proton	A positively charged atom.	particle found in the nucleus of an	Alpha			004
Neutron	A neutral particle found in the nucleus of an atom.		92 U decay by releasing 92 U an alpha particle	2α 2	+	²³¹ ₉₀ Th
Electron	Negatively charged particles found on energy levels (shells) surrounding the nucleus inside atoms.		Beta	⁰ β	+	¹⁴ N
Atomic number	Number of protons in an atom.		Gamma	.1'		7
Mass number	Number of protons plus neutrons in an atom.		235 92 U decay by releasing 92 U a gamma wave →	ο _γ ο	+	²³⁵ 92U
Isotope	Atoms with the same number of protons but a different number of neutrons.		Paper Aluminium Lead			
Alpha particle	A particle formed fro	m two protons and two neutrons.				
Beta particle	A fast moving electron.		1.8			
Gamma ray	An electromagnetic wave.		1.6 1.4			
Geiger- Müller (GM) tube	A device which detect counter can record the tube.	cts ionizing radiation. An electronic he number of particles entering the	1.2 1 0.8			
Half-life	The time taken for the number of nuclei in a radioactive isotope to halve. In one half-life the activity or count rate of a radioactive sample also halves.		S 0.6 0.4 0.2 2nd half-life			
1 Becquerel (1Bq)	I An emission of 1 particle per second		0 3rd half-life 0 200 400 600 800 1000 1200 1400 time (sec)			