Introduction to Engineering	In this unit, students will discover the basics of the world of engineering. What is "engineering"? Is it using materials and processes to manufacture a single item? Is it applying new technologies to mass production of well known products? Or is it implementing methods to reduce waste and improve the sustainability of energy sources? Engineering is all of these things and many more. It affects all aspects of our lives, from the daily use of time saving appliances to performance materials applied in ways we may never have imagined.	
Year 10		

Students will investigate the processes used to manufacture modern products within different engineering sectors.

They will also study some of the new developments in materials and engineering technology that have an impact on life today - or will have in the very near future.

Key Skills:

- The development of core knowledge and understanding of engineering sectors, their interconnections and how they relate to the roles of employees in engineering industries
- Knowledge and skills of the stages involved in planning and implementing an engineering project
- The development and application of skills such as problem solving, design, creativity, communication and collaboration.
- The homework tasks provide an opportunity for you to link and apply the knowledge they have learnt in the classroom to real-life examples. They are also designed to help students develop research skills and become independent learners.

Engineering Sectors	Good and Bad Technology/Engineering	<u>Prototypes</u>
Understand that Engineering is made	To have an understanding of the purpose of	Prototypes: Prototype modelling can be
up of many specialist sectors.	technology and to understand the good and bad	constructed to test different elements of a
	aspects that developing technology brings.	design to help work out how viable it is likely
Be able to give examples of products from each sector.		to be. Modelling can involve creating a
	The design world is constantly changing with the	whole scaled up or down product or it may
	advancement in technology. For manufacturers, this	just be needed to help work through an
	change will have an impact for its workforce and	important element of the design. You will
Understand what design engineers do	production capabilities. Positives: accuracy	find an introduction to materials, learn about
and recognise stereotypes. Improve	improvements, cost effective, sharing of ideas	some basic cardboard skills such as scoring
knowledge of famous design engineers	Negatives: less workforce needed, costly start up	and strengthening, making circles and
and inventors.	prices, waste materials to dispose of. These	cones, but also how to connect pieces
Recognise the characteristics that	continuous advancements can become challenging	together with flanges, tabs and slots. You
successful design engineers share.	for companies who will always want to be ahead of	then might want to add movement to your
	trends, but at the same time also want to ensure they	models, using rotation to make a cuff, add
	still have profit.	

		dials and buttons to your idea, or even
		wheels and axles.
The History of Engineering	Materials and their properties	Types of Production
Gain a deeper understanding of the	Understand materials, components and processes for	Production is about creating goods and
history of engineering and how the	a given engineered product.	services. Managers have to decide on
industrial revolution, computers and the		the most efficient way of organising
changed the engineering industry.	Ferrous metals. Eg Mild steel, wrought iron and	production for their particular product.
	Stalliess steel.	There are three main types of production
A look into technological push and the	(rust)	to choose from:
evolution of products such as mobile	Non forrous motals. Eq Aluminium titanium connor	
phones.	silver and zinc	Job production where items are made
A look at some of the ways emerging	Non-ferrous metals do not contain iron, are not	individually and each item is finished before
technologies have made changes in	magnetic and a usually more resistant	the next one is started. Designer dresses
business with examples including the	to corrosion (rust) that ferrous metals.	are made using the job production method.
use of QR codes during covid-19.	Thermosetting polymers. Eq Phenol-formaldehyde.	
Looking Forward	polyamides and	
Engineers are beloing feed and support	polyurethane.	Batch production, where groups of items
an increasingly urban world population	When thermosetting polymers are moulded they do	are made together. Each batch is finished
that could reach 10 billion by the year	not soften and they cannot be	before starting the next block of goods. For
2050. They are working to ensure that	reshaped.	example, a baker first produces a batch of
all people have access to clean, fresh	Thermoforming polymers. Eg Polyethylene,	50 white loaves. Only after they are
water and adequate shelter.	polypropylene and acrylic.	completed will he or she start baking 50
Engineers today are developing safe	When thermoforming polymers are moulded they can	loaves of brown bread.
efficient, and renewable forms of	soften and be reshaped.	
energy. They are helping to improve	Properties of engineering materials.	
our health with more effective drugs	Strength.	Flow production, where identical,
and medical treatments. They are	Strength is the ability of a material to resist	standardised items are produced on an
powerful ways of creating storing and	deformation.	assembly line. Most cars are
using information.	Hardness.	mass-produced in large factories using
	or cutting	conveyor belts and expensive machinery
Engineers are now and will continue to		such as robot arms. Workers have
be critical to advancing technologies	Toughness is the ability of a material to absorb	specialised jobs, for instance, fitting wheels
that will allow individuals to work, learn,	energy without damaging	
and play in new and interesting ways.		

Key Terms	Extended Learning & Support
Automation	Creative things you can do to support your
The use of control systems for operating equipment such as machinery and processes in	Engineering projects
factories; this reduces human input.	
Client	Extended learning online:
The person/people/audience being designed for and whose needs are being met.	
Commercial process	
Manufacturing method used to produce products in quantity.	 Explore the world of STEM through
Commercial product	our interactive games:
A product intended to make money.	https://new.siemens.com/uk/en/co
 Conceptual stages (of design) 	mpany/education/students/interact
Use of models, sketches and computer aided design (CAD) to show the design of a product as it	ives.html
develops.	Watch a number of the videos on
• Ethics	the YouTube playlist below and
Moral decisions when designing and manufacturing.	attempt to copy the techniques
Fabricate	altempt to copy the techniques
Using processes such as cutting, bending, joining and assembly to produce products.	snown to improve your sketching
	ability. Start with the video at the
A material or source which will one day run out.	bottom of the playlist (the oldest)
• Iterative design	and work your way towards the top
reduct. Each iteration and result starts the process of analysing, prototyping and testing to refine a	to gradually increase the level of
Morket pull	challenge. Continue to practice
• Market pull Draducts developed to most the needs of society or a specific section of the market	after watching all the videos by
Mochanical dovico	attempting the drawing of everyday
Mechanism which produces and/or changes movement	objects from around your house
Nectina	using the techniques or designing a
The tessellation of shapes or nets on a material to minimise the amount of waste during	using the techniques of designing a
manufacture	new product and sketching your
Physical properties	laeas.
Properties that refer to the actual matter that forms the material (eq insulation, conductivity,	
fusibility).	https://www.youtube.com/playlist?l
Planned obsolescence	ist=PLUmGlca4HGqZKHiBZtL_zHjh
Deliberately designing the lifecycle of a product to be short, forcing the user to update their	2HBoBNerA
products guickly.	
Prototype	
An early model or sample of a product used to test a concept.	
Technology push	
Technological discoveries used to drive the development of a product.	
Tolerance	
The minimum and maximum measurements that can be accepted when manufacturing.	