Data Representation

Data Representation

Decimal to Hex conversion

Binary to Hex conversion
(1) Split 01001100 into nibbles, and place each nibble into a base 2 place value

table. | 0100 | | | | | 1100 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 4 | 2 | 1 | $\mathbf{8}$ | $\mathbf{4}$ | $\mathbf{2}$ | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |

2) For each nibble, add the column headings
(3) Convert the denary values to hex.
$4=4$
$12=C$
01001100 is equivalent to $4 C$

Binary Addition

Work right to left and apply these simple rules:

1. $0+0=0$
2. $0+1=1$

Binary Shifts - Multiplication

Binary Shifts - Division

Calculating image size

Size in bits $=$ Width \times Height \times Colour depth
Size in bytes $=$ Width \times Height \times Colour depth $/ 8$

Calculating sound file size

Size in bits $=$ Sampling Rate \times Resolution \times Duration
Size in bytes $=$ Sampling Rate \times Resolution x Duration / 8

Data Compression

ossless Compression Ressiess compression no data is removed. Redundant and duplicate data is repurposed to reduce file size.

- Less file-size reduction than with lossy compression
Decompresses back to original quality
Can be used on computer programs - Can be used

Example file types: JPEG, MP3, MPEG-4.

RLE - Run Length Encoding

Assuming $1=$ white and black $=0$, this run could be encoded as:

1111000000000000

Using RLE, the row could be represented as 4 ' 1 's and 12 ' 0 's or 41120

Huffman Trees

Consider the frequency of each character in the sentence: "SHE SELLS SEA SHELLS"

Huffman

 compression- Huffman coding of "she sells sea shells" $=49$ bits
- 7 -bit ASCII coding $=20$ Characters or 140 bits
- This is a lossless reduction in the file size of 65%

