Computer Systems

Keyword	Definition	
Hardware	The physical components that make up a computer system	
Software	The non-physical programs that are stored by and run on a computer system	
RAM	Random Access Memory	
ROM	Read-only memory	
Truth Table	Shows all possible combinations of inputs and the outputs they create	
Logic Gate	AND, OR, NOTand XOR – used to build physical circuits	
Embedded Computer	A single microprocessor that includes RAM, ROM and a CPU	

Binary logic – OR gate

If either input is 1 (True) then the output is 1 (True)
Otherwise the output is 0 (False)

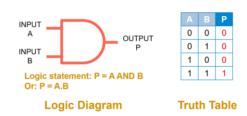


Logic Diagram

Truth Table

Binary logic - OR gate

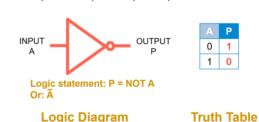
If **just** one input is 1 (True) then the output is 1 (True) Otherwise the output is 0 (False)



Logic Diagram

Truth Table

Binary logic – AND gate


If both inputs are 1 (True) then the output is 1 (True)
Otherwise the output is 0 (False)

Binary logic – NOT gate

If 0 is input it outputs 1 (True)

If 1 is input it outputs 0 (False)

Logic Gates and Symbols

Logic gate	Logic symbol	Example with logic symbols	Meaning
AND		A.B	A AND B
OR	+	A+B	A OR B
NOT	_	Ā	NOT A
XOR	Ф	AθB	A XOR B

Compiler

A compiler translates a high-level language into machine code

The code written by the programmer is called the source code

Assembler

When assembly code is written it first needs to be translated into machine code

An assembler translates assembly code to machine code

Embedded vs Non-embedded

Feature	Embedded system	Non-embedded system
CPU speed	Typically slow	Typically very fast
Software	Has one purpose and cannot install new software	New software can be installed
Storage	Programs stored on ROM	Programs stored on hard drives
Reliability	Typically very reliable – e.g. a microwave should not have a bug that changes defrost to full power	As it runs many software programs it may be less reliable and need restarting the device

Operating System (OS)

Responsible for managing:

Processor(s)

Memory

Input/Output (I/O) devices

Applications

Security

Utility Software

Encryption software

Defragmentation software

Data compression

Disk clean-up tools

Disk formatters

Anti-virus software

Computer Systems

Fetch an

instruction from Main Memory

Execute the

instruction

Levels of Cache memory CPU Registers Level 1 Cache Level 2 Cache Level 3 Cache **Physical RAM** (Main Memory) **Disc Storage** (Virtual RAM, Hard Drive)

Capacity

Fetch – Decode – Execute cycle

The CPU operates by repeating three operations:

- FETCH causes the next instruction to be fetched from main memory
- DECODE decodes the instruction to work out what the instruction is
- **EXECUTE** the instruction is executed

This process is then repeated...

Secondary storage devices

Blu-ray drive

DVD drive

CD drive


Tape drive

Removable flash media / USB stick /SD card

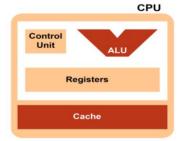
Buses

A bus is a set of parallel wires connecting two or more components of the computer

- · When the CPU wishes to access a particular main memory location, it sends the address requested to memory on the address bus
- · The data in that location is then returned to the CPU on the data bus
- · Control signals are sent along the control bus

Memory and Storage

Main memory	Secondary storage
Volatile (RAM)	Non-volatile
Very fast to read/write	Slow to read/write
Expensive per GB	Cheap per GB
Stores data and programs currently in use by the computer system	Permanently stores data to be used when needed
Directly accessible by CPU	Not directly accessible by CPU


Components of the CPU

The CPU has two major components called the

- Control Unit
- · Arithmetic-Logic Unit (ALU)

There are also registers that are used to carry out these operations

- · A register is a very fast memory location in the CPU itself
- · Cache is located on the CPU it is slower to access than registers but faster than RAM

PG ONLINE

RAM vs ROM

Decode the

instruction

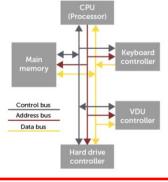
Characteristic	RAM	ROM
Size	Typically 4 GB – 32 GB	Typically 4 MB – 8 MB
Used to store	Running programs and operating system	BIOS and bootstrap
Read ability	Yes	Yes
Write ability	Yes	No
Volatile	Yes	No

Storage types

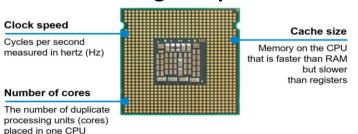
Primary storage

RAM and ROM

- Secondary storage
- · Hard Disk Drive (HDD)
- Solid State Drive (SSD)


Offline secondary storage

- Compact Disc (CD), Digital Versatile Disc (DVD) or BluRay
- · Flash memory, SD cards
- Removable HDD or SSD
- Magnetic tape


External buses

The CPU is also connected to the external Input-output device controllers by means of the system bus

- · Only one device can transmit along a bus at any one time
- The address bus is one way only, from the CPU
- · What about the data bus?

Factors affecting CPU performance

Storage methods

Magnetic: Mechanical parts move over the disks surface to read and write data magnetically, or a drive head reads a magnetic tape

Optical: Lasers read and write data using light

Solid State: Data is recorded onto solid memory chips without any moving parts

