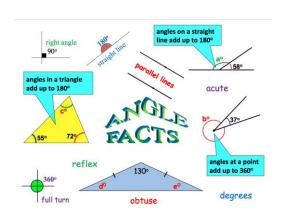
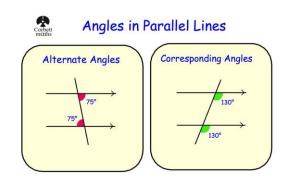
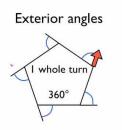
Angles and trigonometry

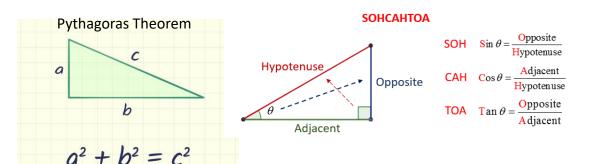

Congruent – shapes are exactly the same size and shape

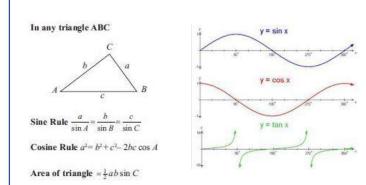

Similar – one shape is an enlargement of the other

Regular polygon – a shape with equal sides and equal angles

Tessellate – when shapes fit together with no gaps, the angles where the shapes meet must add up to 360°


Hypotenuse – the longest side in a right angled triangle




Angles in regular polygons

Shape	Sides	Interior Angles	Shape	Each Angle
Iriangle	3	180°		60°
Quadrilateral	4	360°		90°
Pentagon	5	540*		108*
Hexagon	6	720*	\bigcirc	120*
Heptagon (or Septagon)	7	900*	0	128.579
Octagon	8	1080°	0	135*
Nonagon	9	1260"	0	140"
				250
Any Polygon	n	(n-2) × 180°	n	(n-2) × 180° / n

Higher GCSE only, advanced trigonometry and trigonometric graphs

Transformation Rules for Functions				
Function Notation	Type of Transformation	Change to Coordinate Point		
f(x) + d	Vertical translation up d units	$(x, y) \rightarrow (x, y + d)$		
f(x) – d	Vertical translation down d units	$(x, y) \rightarrow (x, y - d)$		
f(x + c)	Horizontal translation left c units	$(x, y) \rightarrow (x - c, y)$		
f(x - c)	Horizontal translation right c units	$(x, y) \rightarrow (x + c, y)$		
-f(x)	Reflection over x-axis	$(x, y) \rightarrow (x, -y)$		
f(-x)	Reflection over y-axis	$(x, y) \rightarrow (-x, y)$		
-61-1	Vertical stretch for a >1	(14.14) > (14.14)		
af(x)	Vertical compression for 0 < a < 1	$(x, y) \rightarrow (x, ay)$		
f(bx)	Horizontal compression for b > 1	$(x,y) \rightarrow \left(\frac{x}{b},y\right)$		
I(DX)	Horizontal stretch for 0 < b < 1	(a, b, b)		